
International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1094
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Investigation and Communication between
Simulators for Molecular Dynamics with

Reconfigurable Hardware
Maicon Aparecido Sartin, Ney Laert Vilar Calazans, Osmar Norberto de Souza

Abstract— Molecular dynamics simulation presents a several of important information about molecular system. However, to execute this
simulations is necessary a support with high performance of computational resources for computing calculus math with real numbers.
Reconfigurable devices are widely used how accelerators of dedicated hardware for the handling of the more intensive kernel
computational in the simulations. The main contribution os this paper is a proposed of communication method between a host machine and
a reconfigurable hardware platform based in FPGAs suggesting a software architecture used to accelerate applications of Molecular
dynamics simulation, which more intensive kernel computational is investigated.

Index Terms— Application Programming Interface, Bioinformatics, Communication, FPGA, Molecular Dynamics, Parallel Processing,
Profile Trace, Reconfigurable Device.

——————————  ——————————

1 INTRODUCTION

IOINFORMATICS and computational molecular biophys-
ics are areas that require many processing resources and
benefiting from availability of High Performance Compu-

ting (HPC). Specifics applications for this areas can be hig-
hlighted the simulation of macromolecules by molecular dy-
namics (MD). MD is a technique to simulate the movement
and interactions between atoms in a molecule or between mo-
lecules using the classical equations of newton movement [1].
For example, the prediction of protein structures to require
few simulation nanoseconds needs days of processing in a
conventional computer or grid computing [2]. Depending on
the size of them protein which structure if desire to predict can
be necessary hundred of simulated nanoseconds for macromo-
lecule unfeasible its prediction by means of computational
resources [3].

The combination of conventional computers and FPGAs
(Field Programmable Gate Arrays) with distinct granularity
levels produce an approach technological called of High Per-
formance Reconfigurable Computing (HPRC). Some good
results of this approach to solve the problem of this work have
been reported in [4] and [5]. Applications requires HPC de-
termine a new target of technological development that in-
volve HPRC platforms. However, there are limitations that are
identified in [6]: FPGA resources and availability of hardware
designers.

FPGA platforms are often used to acceleration by hardware
in applications of bioinformatics and computational molecular
biophysics [1] [7] [8] [9]. This hardware is used by facility rela-
tive in software migrate for hardware through of dedicated
compiler. However, with the direct implementation in VHDL
can to reach best performance [10] [11], although this increases
too the complexity and the run time of the project.

In a HPRC platform, perform a direct communication be-
tween host computer and hardware with FPGAs. The applica-
tion is divided between these components. The reconfigurable
hardware implies in the employe of software and tools of the
hardware manufacturing for communication between host

and FPGA. Given the diversity of manufacturers is necessary
the used of Application Programming Interfaces (API) to con-
nect these equipments in several platforms bringing portabili-
ty. There are already APIs open and specific proprietary for
determined hardware platforms, but this have low portability.

This work describes a software architecture for the com-
munication of the host with a hardware based in FPGA. In the
host software is coupled with application of simulation by DM
(more intensive kernel computational) aiming the data trans-
fer of this application for the hardware platform via standard
communication interface.

The rest of the paper is organized of the following form.
The section II describe a review of the state of art in APIs
guided for the target of this work. The section III lays out the
bases concepts as materials and tools used in the experiments,
in addition of the software investigation of simulation by MD.
Section IV presents software proposed for communication
API. Section V brings results about the use and validation of
the software architecture and section VI discusses final con-
siderations about work.

2 PROCEDURE FOR PAPER SUBMISSION
2.1 Review Stage

There are many research groups working to accelerate ap-
plications by MD, by improving the performance in modern
computer architecture based in reconfigurable hardware as
proposes in [7], [8] [9] e [12].
The development of APIs is not a trivial task [13] and different
development environments provide by FPGAs manufacturers
only relieve part of that complexity. In [13] the authors pro-
pose a generic API (OpenFPGA GENAPI) for supporting the
programs integration in the calculus of classical force fields by
MD with hardware accelerators based in FPGAs. Among the
various features shown as needs, one can mention some: re-
source allocation, FPGA initialization, management algo-
rithms in FPGA (file stream), mapping to the FPGA, and

B

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1095
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

memory allocation for host data transfer to the FPGA, vice-
verse, and explicit interface to block data transfer functions.
The authors in [14] argued that in HPC applications there are
two important aspects. First, how to use of the API hiding the
parallel system and the related questions to system architec-
ture. This work demonstrate that a big bandwidth and low
latency connectivity may be important, but the correct way of
using the API can also be relevant. The authors have imple-
mented two types of applications a FFT (Fast Fourier Trans-
form) and DGEMM (Dense Matrix Multiply Operation) opera-
tions with several hardware architectures and different sizes
of floating point numbers. The authors maintained that the
wrong use of the API could have a major impact in the appli-
cation performance. In [10] the authors show significant re-
duction in development time of applications in reconfigurable
computing by use of portable libraries with optimize hard-
ware modules. Literature presents the exchange and the chal-
lenges found in the project of such libraries and provided one
guidelines set in the development of portable libraries and the
validation of this support through a case study with RCLib
library. The library of hardware RCLib has been demonstrated
(in use and performance) by two application examples, simple
and multiple nodes of processing and two parallelism levels
(chip and system) with different algorithms in the implemen-
tation.

3 SYSTEM FEATURES AND SOFTWARE INVESTIGATION
OF SIMULATION BY MOLECULAR DYNAMIC

3.1 FPGA
 The implementation on FPGAs circuits is performed by

hardware designers and its main feature is to enable a process
of software development, which circuits can be rapidly de-
signed, configured and tested in a short time and without the
manufacturing costs of a dedicated circuit.

Reconfigurable hardware (FPGA) design produced locally
for communication with PCI interface by means Main Bus, this
interface was used to read and write tests (section XX) [17].
Fig. 1 illustrate the hardware with main module (MB_Target),
four slaves modules (Slave_Read, Slave_Write, Slv_Handler_R
e Slv_Handler_W), two memory modules (Mem_Out e
Mem_In), module for implementations (Top) and signals in
the hardware implementation. Main module have function to
manage the first two modules slaves for read and write trans-
actions in the Main Bus. Slaves modules responsible to access
into memory for write and read are Handlers. Lastly, TOP
module make data manipulation, in this work the module
have function of data transfer of the input memory for output
memory (it does not make any calculus).

Hardware is defined to perform data transfer (send and re-

ceive) of 64 bits of data for call and memory is formed for
Block RAMs of the FPGA, full storage is 81.600 words of 32
bits. Data flow in the input and output of this hardware de-
sign by write and read call in Main Bus is determined by FIFO
(First In, First Out) sort technique.

This hardware is viable to make tests and validation with
API in the data transfer between host and FPGA platform. The
board intended for realization and evidence communication in
the initial tests was DN8000K10PCI with only Xilinx FPGA
(XCV4FX100).

3.2 Molecular Dynamic

The molecular mechanics uses simple functions of potential
energy (such as harmonic oscillator or the potential of Cou-
lomb) for model molecular systems. This mechanics is often
applied in the refinement of molecular structures and simula-
tions by MD, Monte Carlo (MC) and molecular docking [11].
This refinement is first step in preparation phase of a molecu-
lar system, subsequently submitted to simulations by MD.

The method of simulation by MD is widely used to obtain
information about the kinetics and thermodynamics of pro-
teins or other molecular systems over the simulation period. In
the simulation can to obtain details of the movement of indi-
vidual particles as a function of time of a molecular system
planned to build. The information are important for the syn-
thesis of drugs or study of the systems properties in the search
for cures of diseases. However, the running such simulations
is necessary high-performance computing resources. A regular
molecular simulation is necessary tens or hundreds nanose-
conds for researcher to analyze a molecular system. In the case
study of the section III-D was performed with only 10 picose-
conds, the researchers needed of a longer simulation time,
causing a increase fr various days or to about one month of
wait of the simulation. There are others factors that can in-
crease the time simulation as the size of the molecular system,
the reduction of the interaction time (timesteps), and others.

MD and several other techniques are related in a metho-
dology of computational simulation integrating the equation
of Newton movement. Thus, model of the temporal evolution
of the interactions between atoms or molecules determine the
force on each atom repeating these interactions among all and
generating the evolution of the molecular system. MD is based
in classical mechanics or second law of Newton. Function of
potential energy is divided in two parts: bonded and non-
bonded atoms, such Eq. (1). In the first part the bonded atoms
contains calculus of the number of covalent bond, angles and
dihedral. Nonbonded atoms have the calculus of Van Der
Walls and the electrostatics interactions [7].

 (1)

————————————————
• Maicon A. Sartin is currently adjunct professor at UNEMAT, Colider,

Brazil. E-mail: mapsartin@unemat.br
• Ney L. V. Calazans is currently associate professor at PUCRS, Porto Al-

gre, Brazil. E-mail: ney.calazans@pucrs.br
• Osmar N. de Souza is currently associate professor at PUCRS, Porto Al-

gre, Brazil. E-mail: osmar.norberto@pucrs.br

Fig. 1. Hardware design to perform data transfer by Main Bus.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1096
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In the case studies performed of this paper employ the

package of simulations by MD the AMBER [18] with version 9.
Two modules were used of this package (SANDER and
PMEMD). The software was chosen as popular and respected
between the researchers in bioinformatics area.

Initial parameters for simulation by MD and molecular sys-
tem are defined in input files of the experiments, of this files
were obtained locally [19]. These features are equals in all ex-
periments presented subsequently. The MD used in the simu-
lation is isobaric-isothermal (NPT) type. Molecular system is
compound by a protein molecule, a coenzyme and 6 counter-
ions, water molecules 10,532, containing a total of 35,681
atoms as Fig. 2.

3.3 Application Profile
GPROF (GNU PROFiler) tool [15] of the GNU was used to

analyze the more intensive computational kernel and to gen-
erate profile trace of the applications running in the host with
profile plan and call graph. In profile plan can be visualized
with details the spend time in each module and application
routine. The call graph obtained hierarchy and sequence of the
calls performed in all application, included quantity of calls in
each module or routine. These results are exposed in Fig. 3.
The quantity of calls in each routine is in brackets (left side)
with execution sequence of the PMEMD software routines. In
subroutine short_ene can to observe basic structure of the
software together with quantity of repetitions. The fundamen-
tal loop PCH (Part Converted Hardware) is presented in Fig.
3. In application of simulation by MD of the PMEMD (target
software) are run 5 modules as sequence of the Fig. 3 (left
side), at least until the routine short_ene (target routine).

The values shown in Fig. 3 were acquired of a simulation

using PMEMD with 200 interactions and a timestep of 2 fem-
toseconds (fs) for each iteration. The values was calculated
based on the data amount generated in the short_ene subrou-
tine monitoring. This number was opted to show clearly the
functions more visited together the hierarchy and spending
time equal to a larger simulation. Thus, the ideal piece of code
to perform parallelism and consequently the transport for
hardware platform in the acceleration. In [16] shows the same
subroutine (short_ene) such as greater computational cost for
simulations based in SANDER. Total time of the subroutine
(short_ene) is 73.14% and force calculus for nonbonded atoms
arrive 70.82% of the application runtime. In SANDER were
defined the same input parameters presented by MD, but with
5.000 timesteps or 10 picoseconds of simulation time in serial
mode. In this test short_ene subroutine spend approximately
68.77% of all time runtime simulation or part with greater
computational cost. Percentage of each calculation was ob-
tained with JAC (Joint Amber-Charmm) benchmark of the
AMBER package.

3.4 Simulations by MD with AMBER Package
The simulation performed with PMEMD contain same fea-

tures presented in section III-A and simulation time was de-
fined as 10 picoseconds or 5.000 timesteps. Results of this case
study in the two applications by MD (PMEMD and SANDER)
in different environments were suitable for comparative effect
between the same. Two computers contained a four cores pro-
cessor and RAM memory 4 GB and other a two cores proces-
sor an RAM memory 2 GB. Simulation was running in each
one computer distributing process between the multi-core
processors. Other environment employed two computers to
form a litle cluster distributing process in the two nodes with
MPI communication between them. Simulations used to 8 dif-
ferent process quantity: 1, 2, 3, 4, 5, 6, 8 and 12.

In results for two independent computers with simulations
using two applications by MD, there was clear difference be-
tween the two computers in the two applications. In the simu-
lations with cluster obtained worst results than the only com-
puter with four cores (Fig. 4). Other important point as can be
observed and main stimulus for achievement of this simula-
tion is a comparative between two applications of the AMBER
package (PMEMD and SANDER). In all environments shown,
the PMEMD application was higher than SANDER, even with

Fig. 3. Call graph of a simulation by MD with 400 fs using PMEMD..

Fig. 2. Tertiary structure of the molecule without the orthorhombic box
and featuring NaH waste by drawing in the form of sticks in the center
of molecule structure. This molecule is immersed in an orthorhombic
box size 72.372 Å x 68.278 Å x 72.019 Å with PDB ID 1ENY.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1097
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

architectures and quantities process distinct. For this reason
and simplicity and code optimization, it was opted that
PMEMD as a good basis for this work.

4 PROPOSAL FOR SOFTWARE ARCHITECTURE
In the software architecture proposed in this work is very

important the definition of the form and structure in API call
for communication between hardware and software. It's im-
portant to emphasize the organization of this software archi-
tecture for approaching the communication of hardware and
software and the different abstraction levels.

Three abstraction levels were employed to provide reason-
able abstraction to the software and with a view to facilitating
the use of the API. The first level understands of the higher
layer of software where the programmer makes API call. In
the second, communication interface is defined that will be
used by the hardware platform, for example, PCI, Ethernet,
USB, etc. The last level makes access to hardware platforms to
be used depending on the interface defined previously. This
division of the layers of the API aspires to adapt functionali-
ties and hardware platforms, as Fig. 5. The API organization
and its abstraction levels are presented in Fig. 6.

API proposed facilitates to aggregate the functions for this
application and providing the API portability. API offerings
support a FPGA platform through of a PCI interface commu-
nication. The adapted modules to PMEMD software were or-
ganized of form to present a structure as the abstraction layer
that adopting initially as guide. The project is modified only in
the level desired, for example, the FPGA platform or commu-
nication interface in a new project, thus reducing the complex-
ity of this integration with the application of simulation by
MD. Nowadays, API is used with the PMEMD application.
The API portability with other software different of the AMB-
ER package can be performed easily, provided that the soft-
ware has support to C language.

Software/Hardware communication in this routines are

initialized in the loading of the driver module of the hardware
platform (third level), selecting the platform model used by
means of requisition to driver. After to load driver of the platform
can be executed the routines which function is write and read in
communication bus (Main Bus) according to primitive type
(second level). At first, the API was defined with some standard
primitives in the high abstraction level as Table 1. The part of
start and stop in the API is determined in the calls sent and
received of data respectively with a block call between the
modes.

5 RESULTS
The API validation in a simulation by MD works together

with PMEMD software. Data sent were performed in simula-
tion time in the MD application with hardware platform. Data
return were received in the MD application with API, which
function is to make interface between host (PMEMD) and
hardware platform (FPGA). To demonstrate these validation

Fig. 5. API abstraction layers.

Fig. 4. Simulation by MD with PMEMD and SANDER: a comparative
between a parallel environment (two computers) and one computer
with four cores processor (Intel) and one computer with two cores
processor (AMD TurionX2).

Fig. 6. Modules organization involved in the API and its abstraction
layers.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1098
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

were carried out two preliminar experiments with equal pa-
rameters of the simulation by MD: hardware project in the
FPGA and modes of transfer in the API.

Data transfer (receiving or sending) is composed by a call to
PCI bus with one word of 32 bits in hexadecimal. In the API
determined the variables of the integer type using just one
word and the floating point two words. The start and stop
definition is made in the coding and decoding of all data to
correspond the hexadecimal number employed by bus, hold-
ing a owner protocol for data identification. Thus, the informa-
tions transferred between platforms are proof, following to
bus constraint and making API validation.

5.1 First Experiment

In a first instant, the API had objective to make communica-
tion between host and hardware platform without worrying
about performance.

In the code of the PMEMD software has to include the API
primitives in Fortran language with due to its characteristics.
Thus, operations of writing and reading are triggered by first
level of the API passing by intermediate level with the basic
definitions of operating system and bus addressing. In the
third level makes the driver initialization and mapping of the
communication in buses as Fig. 7.

For each sending and receiving of two words of 32 bits

were defined that the two and three levels will be initialized
and disabled after termination of the communication aiming
to ensure the facility of API validation. Then, each two words
have an interruption to driver of the DN8000K10PCI board for
sending and receiving of these words. In this interruption
changes access mode of user to kernel that allowing access to
hardware device as Fig. 7.

Experiment results are showed by Fig. 8 and last character

in each operation corresponds to data type (I – integer and D -
double precision floating point).

In the experiments were demarcated different sizes, va-
riables types and transfer types. At first, two variable types
were included (integer and floating point) in the PCH of the
PMEMD software. Sizes are only a variable, three vector di-
mensions (8, 32, 128) and matrices (3x8, 3x32, 3x128). In order
to make things easier to see put follow values 1, 8, 24, 32, 96,
128 e 384 (vectors - 8, 32 e 128; matrices - 24, 96, 384). Zero val-
ue in the Fig. 8 corresponds to running of the simulation in the
PMEMD software without API call. Three types of transfers
were performed sending (SEND), receiving (REC) and send-
ing and receiving (SEND_REC) for each value of variable
amount. By Fig. 8 can observe similarity in the operation times
between SEND_I and REC_I, and also in SEND_D, REC_D
and SEND_REC_I. In all cases, which quantity is greater than
1 the transfer times are unacceptable in the bus use.

5.1 Second Experiment

As in first experiment observed a high runtime of the trans-
fer operations of API data. In the second experiment sought to
generate a performance improvement. Thus, in each transfer
of two words verified that there was no need of the interrup-
tion for enable and disable the hardware platform driver. This
cause a big increase of time in the transfer with a greater num-
ber of variables.

The interruption was established for each call done to API
and to ensure the right time of transfer. Hence, the number of
variables to transfer, will not make any difference and the in-
terruption time will be the same in all cases, using dynamic
allocation of memory and passing just only pointer for access
the data to be transfer.

TABLE 1
DESCRIPTION OF PRIMITIVES HIGHER LEVEL OF ABSTRACTION

OF THE API PROPOSED.

ROUTINE DESCRIPTION

API_DATA (control,
data1,..., data15)

Routine that enables data send for running of
the more costly loop of the short_ene
subroutine. Primitive contains data of several
types and sets, usually in floating point and
first field is used for running control.

API_DATA_I (control,
data, parameter, size)

Routine to send integer data to FPGA. Third
field defines the type of data sets (variable,
vector or matrix) and fourth field defines the
size of the data type.

API_DATA_D (control,
data, parameter, size)

Routine to send floating point data (double
precision) to FPGA. The fields follow the
same definition and constraints found in
API_DATA_I.

API_REC_DATA(control,
data1, ..., data13)

Once the data has been sent as the functions,
it is necessary to wait for FPGA that will
perform the calculus and returning only the
variables which were necessary for the
simulation running in the PMEMD software.
MD application in the host performs this
function and then wait to receive the data.
This primitive contains data of several types
and sets.

API_REC_I(control, data,
parameter, size)

This routine receives just one type of integer
data at time different from
API_REC_DATA() routine. Second field
determines the variable that will receive data
of the hardware platform respecting the data
type and following the same definition and
constraints found in API_DATA_I().

API_REC_D(control,
data, parameter, size)

Routine receives a type of floating point data
and double precision as defined in
API_DATA_D() and in according with the
API_REC_I().

Fig. 7. API call of data sendo of the integer type with two words sent
by interruption.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1099
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In the validation of this improvement can to observe just a

little variation in the runtime in each operation. This is be-
cause of the own simulation that has different processing time,
influencing the results. In some cases, the variations occur in
descending order of quantity of variables. In this way, API
running is not influencing in the simulation runtime and these
differences are determined by own simulation.

In this experiment was possible to observe the API valida-
tion with a several parameters and runtimes. Results present
that there was no influence the simulation time of the molecu-
lar system in the PMEMD software. The data were tested in
the sending and receving for the software in the host without
any problem.

6 CONCLUSION
This work presents the development of a software architecture for

communication of a host with a hardware platform based in FPGA to
given support in the organization model of a high performance struc-
ture with dedicated hardware.

Conducting the necessary case studies were very important by ac-
quisition of determinant informations to project. API was validates
with demonstration of two experiments performed with several cha-

racteristics as different parameters, number of variables and commu-
nication modes, providing a comparation between them. The same
molecular system was used in all cases.

ACKNOWLEDGMENT
The authors wish to thank UNEMAT, PUCRS, FAPEMAT and
FACIN.

REFERENCES
[1] X. Yang, S. Mou, and Y. Dou, “FPGA-Accelerated Molecular Dynamics Simu-

lations: An Overview”, In: Int. Work. on App. Reconfig. Comp. (ARC), 2007,
pp. 293-301.

[2] C. Bystroff, S. Garde, “Helix propensities of short peptides: Molecu-
lar dynamics versus Bioinformatics”, Proteins: Structure, Function
and Bioinformatics J., 50, 2001, pp. 552-562.

[3] B. Batson et al., “Anton, a Special-Purpose Machine for Molecular
Dynamics Simulation”, In: The 34th Annu. Int. Symp. on Comp. Ar-
chitecture (ISCA), 2007, pp.1-12.

[4] M. Beauchamp et al, “Architectural modifications to improve
floating-point unit efficiency in FPGAs”, In: Proc. Field Prog. Logic
and Applications, 2006, pp. 515–520.

[5] D. Strenski, “FPGA Floating Point Performance – a pencil and paper
evaluation”. HPC Wire, 2007.

[6] Y. Gu, M.C. Herbordt, “High Performance Molecular Dynamics Si-
mulations with FPGA Coprocessors”. In: Reconfig. Systems Summer
Institute (RSSI), 2007.

[7] P.K. Agarwal et al, “Using FPGA Devices to Accelerate Biomolecular
Simulations”. IEEE Computer, 40(3), 2007, pp. 66-73.

[8] Y. Gu, T. Vancourt, amd M.C. Herbordt, “Explicit design of FPGA-
based coprocessors for short-range force computations in molecular
dynamics simulations”, Parallel Comp., 34(4-5), 2008, pp. 261-277.

[9] R. Scrofano et al, “Accelerating Molecular Dynamics Simulations
with Reconfigurable Computers”, In: IEEE Trans. on Par. and Distr.
Systems, 19(6), 2008, pp. 764-778.

[10] P. Saha et al, “Portable library development for reconfigurable compu-
ting systems: A case study”, Parallel Comp., 34, 2008, pp. 245-260.

[11] S.A. Adcock, J.A. Mccammon, “Molecular Dynamics: Survey of Methods
for Simulating the Activity of Proteins”, J. Chem. Rev., 106(5), 2006, pp.
1589-1615.

[12] A. Patel et al, “A Scalable FPGA-based Multiprocessor”. In: 14th Annu. IEEE
Symposium on Field-Prog. Custom Comp. Machines (FCCM), 2006, pp. 111-120.

[13] E. Stahlberg et al, “Molecular Simulations with Hardware Accelerators: A
Portable Interface Definition for FPGA Supported Acceleration”. In: Recon-
fig. Systems Summer Institute (RSSI’07), 2007.

[14] K.D. Underwood, K.S. Hemmert, C. Ulmer, “Architectures and APIs: Assessing
Requirements for Delivering FPGA Performance to Applications”. In: Int. Conf. for
High Performance Comp., Networking, Storage and Analysis (SC), 2006.

[15] S. L. Graham, P.B. Kessler, and M.K. Mckusick, “Gprof: A call graph execution
profiler”. SIGPLAN J., 17(6), 1982, pp. 120-126.

[16] J. Kuehn, “A Brief Overview of Activities in the Future Technologies Group at Oak
Ridge National Laboratory”. In: Workshop on Research Alliance in Math and
Science (RAMS), 2005.

[17] Hardware Design Support Group, “Grupo de Apoio ao Projeto de
Hardware (GAPH),” https://corfu.pucrs.br/. 2015.

[18] AMBER, “Amber Home Page,” http://ambermd.org/. 2015.
[19] LABIO, “Laboratório de Bioinformática, Modelagem e Simulação de

Biossistemas (LABIO),” http://www.labio.org/. 2015.

Fig. 2. Results of the second experiment with API.

Fig. 8. Results of the first experiment with API.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Procedure for Paper Submission
	2.1 Review Stage

	3 System Features and Software Investigation of Simulation by Molecular Dynamic
	3.1 FPGA
	3.2 Molecular Dynamic
	3.3 Application Profile
	3.4 Simulations by MD with AMBER Package

	4 Proposal for Software Architecture
	5 Results
	5.1 First Experiment
	5.1 Second Experiment

	6 Conclusion
	Acknowledgment
	References

